金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

初一数学下册实数教案

来源:学大教育     时间:2015-01-21 11:23:47


我们都知道事先进行教案的设计不仅能够帮助老师们更好地把握课堂、传授知识,还能帮助同学们更加容易理解与接受老师所讲授的内容,我们学大教育专家为大家带来了初一数学下册实数教案,希望不仅能够拓宽老师教学思路,还能帮助同学们学习。

《实数》教案

教学任务分析

教学目标

知识技能 1、了解无理数及实数的概念,并会对实数进行分类.

2、知道实数与数轴上的点具有一一对应关系.

3、学会使用计算器探求将有理数化为小数形式的规律.

4、学会使用计算器估算无理数的近似值.

5、学会使用计算器计算实数的值.

数学思考1、 通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.

2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.

3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.

4、经历对实数进行分类,发展学生的分类意识.

5、通过使用计算器估算无理数的近似值和计算实数的活动,使学生建立对无理数的初步数感.

解决问题 1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.

2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.

3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.

情感态度 1、 通过计算器探求将有理数化为小数形式的规律,激发学生的求知

欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.

2、 通过了解数系扩充体会数系扩充对人类发展的作用.

3、 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新

问题.

重点 了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.

难点 对无理数的认识.

教学流程安排

活动流程图 活动内容和目的

活动1 通过对有理数探究,激发进一步学习的欲望.

通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.

活动2 通过对数的归纳辨析,引出无理数和实数的概念,并对实数进行分类. 使学生了解无理数和实数的概念,学会对实数的分类,

活动3 通过教师演示和学生活动,建立实数与数轴上的点的一一对应. 通过在数轴上找到表示 的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.

活动4 用计算器估算无理数近似值. 在使用计算器估算和验证的过程中,使学生学会用计算器求无理数近似值的方法,渗透用有理数逼近无理数的思想,加深对无理数的理解.

活动5 用计算器求实数的值. 学会用计算器求实数的精确值或近似值.

活动6 小结归纳,课后作业. 回顾梳理,总结本节课所学到的知识,完善原有认知结构,升华数学思想.

教学过程设计

问题与情境 师生行为 设计意图

[活动1]

通过对有理数探究,激发进一步学习的欲望.

问题:

(1)利用计算器,把下列有理数1/3 转换成小数的形式,你有什么发现?

(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数?

教师提出问题(1).教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.

教师提出问题(2).学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.

活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征. 计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.

通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.

注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。激发学生的求知欲。

[活动2]

通过对数的归纳辨析,教师引出无理数和实数的概念,并引导学生学会对实数如何分类.

问题:你能对我们学过的数进行合理的分类吗? 教师引出无理数和实数的概念,

教师引导学生独立思考:当对数的认识扩充到实数范围之后,怎样在实数范围内对学过的数进行分类整理?教师在参与讨论时启发学生类比有理数的分类,同时鼓励学生相互补充、完善,并帮助总结出实数的分类结构图.

实数

活动2中,教师应关注:

(1)学生对有理数和无理数的概念以及它们之间的差异与联系的了解程度;

(2)学生在讨论中能否发表自己的见解,倾听他人的意见,并从中获益;

(3)学生是否能用语言准确地表达自己的观点.

通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.

通过学生互相的讨论和交流,可以深刻地体验知识之间的内在联系,初步形成对实数整体性的认识.

[活动3]

通过教师演示和学生活动,建立实数与数轴上的点的一一对应。

问题:

我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示 这样的无理数的点吗?

教师提出问题.

学生独立思考后小组讨论交流,学生借助 的得出过程进行探究,

教师参与并指导实际操作(利用多媒体课件演示圆滚动的过程).

本节由于学生知识水平的限制,教师直接给出有理数和无理数与数轴上的点是一一对应的结论.

活动3中,教师应关注:

(1)学生利用边长为1的正方形的对角线为 的结论,在数轴上找到表示 的点;

(2)学生是否理解直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′所表示的数为 ;

(3)学生是否主动参与探究活动,是否能用语言准确地表达自己的观点. 本次活动是从学生已有的知识水平出发,找到数轴上 的位置,体会无理数也可以用数轴上的点来表示.

借助数轴对无理数进行研究,从形的角度,再一次体会无理数.同时也感受实数与数轴上的点的一一对应关系.进一步体会数形结合思想.

通过多媒体教学使学生了解无理数数 也可以用数轴上的点来表示,从而引发学生学习兴趣.

通过探究活动,在数轴上找到了表示无理数的点,使学生了解无理数的几何意义.

数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,让学生进行探究学习,促使学生主动参与数学知识的"再发现",培养学生动手实践能力,观察、分析、抽象、概括的思维能力.

[活动4]中,教师应关注(1)学生对无理数和实数概念的理解程度;

(2)学生是否能够认真地倾听与思考;

(3)学生是否能够发现其中的数学题,并有意识地运用所学知识解决;

(4)学生能够对知识的归纳、梳理和总结的能力的提高;

(5)学生能否在本节知识的基础上主动思考,类比有理数的性质和运算来学习实数;

(6)学生能否学会用计算器进行计算、探究解决数学问题. 通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.

学生通过独立思考,完成课后作业,教师能够及时发现问题并反馈学生的学习情况,以便于查漏补缺,优化课堂教学.

教学设计说明

(1) 本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义.在中学阶段,多数数学问题是在实数范围内研究.例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等.实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识.同时在本节课中充分发挥计算器的计算、验证、探究功能。因此本节的作用十分重要.

在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。

(2) 在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计-例题选择-课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。

(3) 计算器在本节课的教学中,起到了重要作用,体现在三个活动过程:第一个过程是利用计算器探求有理数的规律,从而引出无理数的概念;第二个过程是利用计算器估算无理数的近似值;第三个过程用计算器计算实数的值.发挥了计算器的计算功能和探究功能。

(4)本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。

(5)教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。

初一数学下册实数教案,在上面文章中我已经进行了详细的分析整理,希望能对老师的授课,同学的学习起到一定的帮助作用。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956